Respuesta :
Answer:
C
Step-by-step explanation:
We simply need to remember this rule shown below:
[tex]\sqrt[n]{x^b} =x^{\frac{b}{n}}[/tex]
So expression to change is [tex]\sqrt[4]{x^5}[/tex]
By using the law, we can rewrite this as:
[tex]\sqrt[4]{x^5} =x^{\frac{5}{4}}[/tex]
Correct choice is C
Answer:
The correct option is C) X^(5/4).
Step-by-step explanation:
Consider the provided radical expression.
[tex]\sqrt[4]{x^5}[/tex]
Now we need to convert the radical expression into rational expression.
[tex]a^{\frac{m}{n}}=(\sqrt[n]{a})^m=\sqrt[n]{x^m}[/tex]
By using the above formula we can rewrite the expression as shown:
[tex]\sqrt[4]{x^5}[/tex]
[tex](\sqrt[4]{x})^5[/tex]
[tex](x)^{\frac{5}{4}}[/tex]
Hence, the required rational exponent is [tex](x)^{\frac{5}{4}}[/tex]
Thus, the correct option is C) X^(5/4).
