Answer:
[tex]\boxed{\text{3.1 g}}[/tex]
Explanation:
We will need an equation with masses and molar masses, so let’s gather all the information in one place.
M_r: 315.46 76.12
Ba(OH)₂·8H₂O + 2NH₄SCN ⟶ Ba(SCN)₂ + 2NH₃ + 10H₂O
m/g: 6.5
1. Moles of Ba(OH)₂·8H₂O
[tex]\text{Moles of Ba(OH)$_{2}\cdot $8H$_{2}$O}\\= \text{ 6.5 g Ba(OH)$_{2}\cdot $8H$_{2}$O} \times \dfrac{\text{1 mol Ba(OH)$_{2}\cdot $8H$_{2}$O}}{\text{ 315.46 g Ba(OH)$_{2}\cdot $8H$_{2}$O}}\\= \text{0.0206 mol Ba(OH)$_{2}\cdot $8H$_{2}$O}[/tex]
2. Moles of NH₄SCN
The molar ratio is 2 mol NH₄SCN:1 mol Ba(OH)₂·8H₂O
[tex]\text{Moles of NH$_{4}$SCN} =\text{0.0206 mol Ba(OH)$_{2}\cdot $8H$_{2}$O} \times \dfrac{\text{2 mol NH$_{4}$SCN}}{\text{1 mol Ba(OH)$_{2}\cdot $8H$_{2}$O}}\\= \text{0.0412 mol NH$_{4}$SCN}[/tex]
3. Mass of NH₄SCN
[tex]\text{Mass of NH$_{4}$SCN} = \text{0.0412 mol NH$_{4}$SCN} \times \dfrac{\text{76.12 g NH$_{4}$SCN}}{\text{1 mol NH$_{4}$SCN}} =\\\textbf{3.1 g NH$_{4}$SCN}\\\\\text{You must use }\boxed{\textbf{3.1 g}}\text{ NH$_{4}$SCN}[/tex]