How to solve this indefinite integral?

[tex]\displaystyle\int\frac{3x}{\cos^2(2x^2)}\,\mathrm dx[/tex]
Substitute [tex]y=2x^2[/tex], so that [tex]\mathrm dy=4x\,\mathrm dx[/tex]:
[tex]\displaystyle\int\frac{3x}{\cos^2(2x^2)}\,\mathrm dx=\frac34\int\frac{4x}{\cos^2(2x^2)}\,\mathrm dx=\frac34\int\frac{\mathrm dy}{\cos^2y}[/tex]
Then
[tex]\dfrac1{\cos^2y}=\sec^2y=\dfrac{\mathrm d}{\mathrm dy}[\tan y][/tex]
so that the integral wrt [tex]y[/tex] comes out to be
[tex]\displaystyle\frac34\int\sec^2y\,\mathrm dy=\frac34\tan y+C[/tex]
Replace [tex]y[/tex] to solve for the integral wrt [tex]x[/tex]:
[tex]\displaystyle\int\frac{3x}{\cos^2(2x^2)}\,\mathrm dx=\boxed{\frac34\tan(2x^2)+C}[/tex]