Respuesta :

[tex]\displaystyle\int\frac{3x}{\cos^2(2x^2)}\,\mathrm dx[/tex]

Substitute [tex]y=2x^2[/tex], so that [tex]\mathrm dy=4x\,\mathrm dx[/tex]:

[tex]\displaystyle\int\frac{3x}{\cos^2(2x^2)}\,\mathrm dx=\frac34\int\frac{4x}{\cos^2(2x^2)}\,\mathrm dx=\frac34\int\frac{\mathrm dy}{\cos^2y}[/tex]

Then

[tex]\dfrac1{\cos^2y}=\sec^2y=\dfrac{\mathrm d}{\mathrm dy}[\tan y][/tex]

so that the integral wrt [tex]y[/tex] comes out to be

[tex]\displaystyle\frac34\int\sec^2y\,\mathrm dy=\frac34\tan y+C[/tex]

Replace [tex]y[/tex] to solve for the integral wrt [tex]x[/tex]:

[tex]\displaystyle\int\frac{3x}{\cos^2(2x^2)}\,\mathrm dx=\boxed{\frac34\tan(2x^2)+C}[/tex]

RELAXING NOICE
Relax

Otras preguntas