Answer:
No. of photons, n = [tex]2.688\times 10^{17}[/tex]
Given:
wavelength of laser beam, [tex]\lambda = 537 nm = 537\times 10^{-9} m[/tex]
Power of the beam, P = 2.0 W
Time, t = 0.050 s
Solution:
Now the energy associated with the beam, [tex]E_{b}[/tex] is given by:
[tex]E_{b} = \frac{hc}{\lambda }[/tex] (1)
where,
h = [tex]6.67\times 10^{-34} J-s[/tex]
c = [tex]3\times 10^{8} m/s[/tex]
Now, using eqn (1)
[tex]E_{b} = \frac{6.67\times 10^{-34} \times 3\times 10^{8}}{537\times 10^{-9}} = 3.72\time 10^{-19} J[/tex]
Now, for total energy, E' calculation from the given power:
E' = [tex]P\times t[/tex]
E' = [tex]2.0\times 0.050 = 0.1 J[/tex]
To calculate the no. of photons, n:
n = [tex]\frac{Total energy}{Energy associated with laser beam}[/tex]
n = [tex]\frac{E'}{E_{b}}[/tex]
n = [tex]\frac{0.1}{3.72\times 10^{-19}}[/tex]
Therefore, the no. of photons emitted by the laser beam:
n = [tex]2.688\times 10^{17}[/tex]