a. Show
sin^2x cos^2x = (1 - cos 4x) / 8
by filling in the table below. Start with the left-hand side.
b. Find all solutions to the equation
Sin^2cos^2x=(2-(sqrt2))/16

a Show sin2x cos2x 1 cos 4x 8 by filling in the table below Start with the lefthand side b Find all solutions to the equation Sin2cos2x2sqrt216 class=

Respuesta :

a. Recall the double angle identities:

[tex]\sin^2x=\dfrac{1-\cos2x}2[/tex]

[tex]\cos^2x=\dfrac{1+\cos2x}2[/tex]

Then

[tex]\sin^2x\cos^2x=\dfrac{(1-\cos2x)(1+\cos2x)}4=\dfrac{1-\cos^22x}4[/tex]

Applying the identity again, we have

[tex]\sin^2x\cos^2x=\dfrac{1-\frac{1+\cos4x}2}4=\dfrac{2-(1+\cos4x)}8=\dfrac{1-\cos4x}8[/tex]

as required.

b. Using the result from part (a),

[tex]\sin^2x\cos^2x=\dfrac{1-\cos4x}8=\dfrac{2-\sqrt2}{16}[/tex]

[tex]\implies\cos4x=\dfrac1{\sqrt2}[/tex]

[tex]\implies4x=\dfrac\pi4+2n\pi\text{ or }4x=-\dfrac\pi4+2n\pi[/tex]

(where [tex]n[/tex] is any integer)

[tex]\implies\boxed{x=\pm\dfrac\pi{16}+\dfrac{n\pi}2}[/tex]