Answer:
[tex]x=90[/tex]
Step-by-step explanation:
The first step is to substitute $6700 in the position of C(X) in the formula:
[tex]C(x)=x^2-60x+4000\\6700=x^2-60x+4000\\x^2-60x-2700=0[/tex]
To solve the second-degree equation use the formula:
[tex]x_{1,2}=\frac{-b\pm\sqrt{b^2-4ac} }{2a}[/tex]
Where [tex]a[/tex] is the coefficient of the[tex]x^2[/tex] ([tex]a=1[/tex]), [tex]b[/tex] is the coefficient of the [tex]x[/tex] ([tex]b=-60[/tex]) and [tex]c[/tex] is the constant part ([tex]c=-2700[/tex])
[tex]x_{1,2}=\frac{60\pm\sqrt{(-60)^2-4(1)(-2700)} }{2(1)}\\x_{1,2}=\frac{60\pm\sqrt{3600+10800} }{2}\\x_{1,2}=\frac{60\pm\sqrt{14400} }{2}\\x_{1,2}=\frac{-60\pm120 }{2}[/tex]
[tex]x_{1}=\frac{60+120 }{2}=90[/tex]
[tex]x_{2}=\frac{60-120 }{2}=-30[/tex]
The number of units manufactures is 90. The other value of x doesn't make sense in the contest of the problem.