Given f(x) = 5/(x-3), simplify f(x+h)-f(x)/h, h does not equal 0 when x = -6
![Given fx 5x3 simplify fxhfxh h does not equal 0 when x 6 class=](https://us-static.z-dn.net/files/d81/54585504e54c71653cc65ad651547b68.png)
Answer:
a) [tex]\frac{f(x+h)-f(x)}{h}=\frac{-5}{(x+h-3)(x-3)}[/tex]
b) [tex]\frac{f(h-6)-f(-6)}{h}=\frac{5}{9h-81}[/tex]
Step-by-step explanation:
The given function is [tex]f(x)=\frac{5}{x-3}[/tex]
[tex]f(x+h)=\frac{5}{x+h-3}[/tex]
[tex]\frac{f(x+h)-f(x)}{h}=\frac{\frac{5}{x+h-3}-\frac{5}{x-3}}{h}[/tex]
[tex]\frac{f(x+h)-f(x)}{h}=\frac{5(x-3)-5(x+h-3)}{h(x+h-3)(x-3)}[/tex]
[tex]\frac{f(x+h)-f(x)}{h}=\frac{5x-15-5x-5h+15}{h(x+h-3)(x-3)}[/tex]
[tex]\frac{f(x+h)-f(x)}{h}=\frac{-5h}{h(x+h-3)(x-3)}[/tex]
[tex]\frac{f(x+h)-f(x)}{h}=\frac{-5}{(x+h-3)(x-3)}[/tex]
When x=-6
[tex]\frac{f(h-6)-f(-6)}{h}=\frac{-5}{(-6+h-3)(-6-3)}[/tex]
[tex]\frac{f(h-6)-f(-6)}{h}=\frac{-5}{(h-9)(-9)}[/tex]
[tex]\frac{f(h-6)-f(-6)}{h}=\frac{5}{9h-81}[/tex]