The Earth’s average radius is 6400 km and its average density is 5.5 g/cm3. If all of the Earth’s matter were compressed to the density of the atom calculated above, what would be the radius of the Earth? Answer in units of m.

Respuesta :

Explanation:

Radius of Earth, [tex]r=6400\ km=64\times 10^5\ m[/tex]

Average density, [tex]d=5.5\ g/cm^3=5500\ kg/m^3[/tex]

Density is given by :

[tex]d=\dfrac{m}{V}[/tex]

[tex]d=\dfrac{m}{(4/3\pi r^3)}[/tex]

[tex]d=\dfrac{3m}{4\pi r^3}[/tex]

[tex]r^3=\dfrac{3m}{4\pi d}[/tex]

[tex]r^3=\dfrac{3m}{4\pi d}[/tex]

m is the mass of earth, [tex]m=5.97\times 10^{24}\ kg[/tex]

[tex]r^3=\dfrac{3\times 5.97\times 10^{24}}{4\pi \times 5500}[/tex]

[tex]r=6375131.35\ m[/tex]

or

[tex]r=6.37\times 10^6\ m[/tex]

So, the radius of the Earth is [tex]6.37\times 10^6\ m[/tex]. Hence, this is the required solution.

ACCESS MORE