Explanation:
Radius of Earth, [tex]r=6400\ km=64\times 10^5\ m[/tex]
Average density, [tex]d=5.5\ g/cm^3=5500\ kg/m^3[/tex]
Density is given by :
[tex]d=\dfrac{m}{V}[/tex]
[tex]d=\dfrac{m}{(4/3\pi r^3)}[/tex]
[tex]d=\dfrac{3m}{4\pi r^3}[/tex]
[tex]r^3=\dfrac{3m}{4\pi d}[/tex]
[tex]r^3=\dfrac{3m}{4\pi d}[/tex]
m is the mass of earth, [tex]m=5.97\times 10^{24}\ kg[/tex]
[tex]r^3=\dfrac{3\times 5.97\times 10^{24}}{4\pi \times 5500}[/tex]
[tex]r=6375131.35\ m[/tex]
or
[tex]r=6.37\times 10^6\ m[/tex]
So, the radius of the Earth is [tex]6.37\times 10^6\ m[/tex]. Hence, this is the required solution.