Respuesta :
Answer:
In a system the difference in pressure between 2 points is given by
[tex]\Delta p=\rho \times g\times h\\\\P_{heart}-P_{brain}=1.06\times 10^{3}\times 9.81\times (23.7-7.0)\\\\P_{heart}-P_{brain}=173.656kPa[/tex]
Now it is given that pressure in the brain was 93.1 torr=12.41 kPa
Thus we have
[tex]P_{heart}-12.41kPa=173.656kPa\\\\P_{heart}=186.066kPa[/tex]
Part 2)
Applying the same equation again we get
[tex]P_{feet}-P_{brain}=1.06\times 10^{3}\times 9.81\times (23.7)\\\\P_{feet}-P_{brain}=246.44kPa\\\\P_{feet}=246.44kPa+12.41kPa=258.856kPa[/tex]
The gauge pressure in its blood that was required at the heart is equal to 186.07 kPa.
Given the following data:
Head height = 23.7 m.
Heart height of 7.00 m.
Blood pressure at brain = 93.1 torr.
Density of blood = [tex]1.06 \times 10^3 \;kg/m^3[/tex]
Conversion:
1 torr = 0.1333 kPa.
93.1 torr = 12.41 kPa.
How to calculate the gauge pressure.
Mathematically, the change in pressure of a system is given by this formula:
[tex]\Delta P = \rho g(h_2-h_1)\\\\P_{h}-P_{b}=\rho g(h_2-h_1)\\\\P_{h}=\rho g(h_2-h_1) + P_{b}\\\\[/tex]
Substituting the given parameters into the formula, we have;
[tex]P_{h}=1.06 \times 10^3 \times 9.8 (23.7-7.00) + 12.41\\\\P_{h}= 173.66+12.41\\\\P_{h}=186.07\;kPa[/tex]
For the blood pressure at the feet, we have:
[tex]P_{f}=1.06 \times 10^3 \times 9.8 \times (23.7) + 12.41\\\\P_{f}= 246.44+12.41\\\\P_{f}=258.85\;kPa[/tex]
Read more on pressure here: https://brainly.com/question/24827501