Respuesta :
Answer:
1) Increase in the diameter equals 3.5 mm
2) Increase in the length equals [tex]0.0003724L_{i}[/tex] where [tex]L_{i}[/tex] is the initial length of the vessel.
Step-by-step explanation:
The diametric strain in the vessel is given by
[tex]\epsilon_{D} =\epsilon_{diam}-\nu \epsilon _{axial}[/tex]
We have
[tex]\epsilon _{diam}=\frac{\sigma _{hoop}}{E}\\\\\sigma _{hoop}=\frac{\Delta P\times D}{2t}\\\\\therefore \epsilon _{diam}=\frac{\Delta P\times D}{2t\times E}[/tex]
Applying values we get
[tex]\therefore \epsilon _{diam}=\frac{5\times 10^{6}\times 2.5}{2\times 20\times 10^{-3}\times 193\times 10^{9}}\\\\\therefore \epsilon _{diam}=\frac{5}{3088}[/tex]
Similarly axial strain is given by
[tex]\epsilon _{diam}=\frac{\sigma _{axial}}{E}[/tex]
[tex]\sigma _{axial}=\frac{\Delta P\times D}{4t}\\\\\therefore \epsilon _{axial}=\frac{\Delta P\times D}{4t\times E}[/tex]
Applying values we get
[tex]\therefore \epsilon _{axial}=\frac{5\times 10^{6}\times 2.5}{4\times 20\times 10^{-3}\times 193\times 10^{9}}\\\\\therefore \epsilon _{diam}=\frac{2.5}{3088}[/tex]
Hence The effect of axial strain along the diameter is given by
[tex]-\nu \epsilon _{axial}[/tex]
Applying values we get
[tex]-\nu \epsilon _{axial}=-0.27\times \frac{2.5}{3088}=-0.0002185[/tex]
hence
[tex]\epsilon _{D} =\frac{5}{3088}-0.0002185\\\\\epsilon =0.00140[/tex]
Now by definition of strain we have
[tex]\epsilon _{D} =\frac{D_{f}-D_{i}}{D_{i}}\\\\\therefore D_{f}=D_{i}+\epsilon D_{i}\\\\D_{f}=2.5+0.0014\times 2.5\\\\\therefore D_{f}=2503.5mm[/tex]
Increase in the diameter is thus 3.5 mm
Using the same procedure for axial strain we have
[tex]\epsilon_{axial} =\epsilon_{axial}-\nu \epsilon _{diam}[/tex]
Applying values we get
[tex]\epsilon_{axial} =\frac{2.5}{3088}-0.27\times \frac{5}{3088}[/tex]
[tex]\epsilon_{axial} =0.0003724[/tex]
Now by definition of strain we have
[tex]\epsilon _{axial} =\frac{L_{f}-L_{i}}{L_{i}}\\\\\therefore \Delta L=0.0003724L_{i}[/tex]
where [tex]L_{i}[/tex] is the initial length of the cylinder.