Answer : The temperature will be, 392.462 K
Explanation :
According to the Arrhenius equation,
[tex]K=A\times e^{\frac{-Ea}{RT}}[/tex]
or,
[tex]\log (\frac{K_2}{K_1})=\frac{Ea}{2.303\times R}[\frac{1}{T_1}-\frac{1}{T_2}][/tex]
where,
[tex]K_1[/tex] = rate constant at [tex]T_1[/tex] = [tex]K_1[/tex]
[tex]K_2[/tex] = rate constant at [tex]T_2[/tex] = [tex]3K_1[/tex]
[tex]Ea[/tex] = activation energy for the reaction = 66.41 kJ/mole = 66410 J/mole
R = gas constant = 8.314 J/mole.K
[tex]T_1[/tex] = initial temperature = 293 K
[tex]T_2[/tex] = final temperature = ?
Now put all the given values in this formula, we get:
[tex]\log (\frac{3K_1}{K_1})=\frac{66410J/mole}{2.303\times 8.314J/mole.K}[\frac{1}{293K}-\frac{1}{T_2}][/tex]
[tex]T_2=392.462K[/tex]
Therefore, the temperature will be, 392.462 K