A certain reaction has an activation energy of 66.41 kJ/mol. At what Kelvin temperature will the reaction proceed 3.00 times faster than it did at 293 K?

Respuesta :

Answer : The temperature will be, 392.462 K

Explanation :

According to the Arrhenius equation,

[tex]K=A\times e^{\frac{-Ea}{RT}}[/tex]

or,

[tex]\log (\frac{K_2}{K_1})=\frac{Ea}{2.303\times R}[\frac{1}{T_1}-\frac{1}{T_2}][/tex]

where,

[tex]K_1[/tex] = rate constant at [tex]T_1[/tex]  = [tex]K_1[/tex]

[tex]K_2[/tex] = rate constant at [tex]T_2[/tex] = [tex]3K_1[/tex]

[tex]Ea[/tex] = activation energy for the reaction = 66.41 kJ/mole = 66410 J/mole

R = gas constant = 8.314 J/mole.K

[tex]T_1[/tex] = initial temperature = 293 K

[tex]T_2[/tex] = final temperature = ?

Now put all the given values in this formula, we get:

[tex]\log (\frac{3K_1}{K_1})=\frac{66410J/mole}{2.303\times 8.314J/mole.K}[\frac{1}{293K}-\frac{1}{T_2}][/tex]

[tex]T_2=392.462K[/tex]

Therefore, the temperature will be, 392.462 K

ACCESS MORE