Let [tex]\vec r(u,v)=u^2\,\vec\imath+v^2\,\vec\jmath+(u+9v)\,\vec k[/tex] be the parameterization for the surface.
The normal vector to the plane is
[tex]\vec n=\dfrac{\partial\vec r}{\partial u}\times\dfrac{\partial\vec r}{\partial v}[/tex]
[tex]\begin{cases}\frac{\partial\vec r}{\partial u}=2u\,\vec\imath+\vec k\\\frac{\partial\vec r}{\partial v}=2v\,\vec\jmath+9\,\vec k\end{cases}\implies\vec n=-2v\,\vec\imath-18u\,\vec\jmath+4uv\,\vec k[/tex]
The point (1, 1, 10) occurs for
[tex]\begin{cases}u^2=1\\v^2=1\\u+9v=10\end{cases}\implies(u,v)=(1,1)[/tex]
Then the equation for the plane tangent to the surface at (1, 1, 10) is
[tex]((x\,\vec\imath+y\,\vec\jmath+z\,\vec k)-\vec r(1,1))\cdot\vec n=0[/tex]
[tex]((x-1)\,\vec\imath+(y-1)\,\vec\jmath+(z-10)\,\vec k)\cdot(-2\,\vec\imath-18\,\vec\jmath+4\,\vec k)=0[/tex]
[tex]-2(x-1)-18(y-1)+4(z-10)=0[/tex]
[tex]-2x-18y+4z=20[/tex]
[tex]\boxed{x+9y-2z=-10}[/tex]