Answer:
Infinity
Step-by-step explanation:
Since x,y,z are positive rel numbers, we have that
[tex]\dfrac{3x4y}{6x5y4z}=\dfrac{1}{10z}\\\\\\\dfrac{y2z}{6x5y4z}=\dfrac{1}{60x}\\\\\\\dfrac{2z3x}{6x5y4z}=\dfrac{1}{20y}[/tex]
Hence,
[tex]\sqrt{\dfrac{3x4y}{6x5y4z}}\sqrt{\dfrac{y2z}{6x5y4z}}\sqrt{\dfrac{2z3x}{6x5y4z}}\\\\\\=\sqrt{\dfrac{1}{10z}\dfrac{1}{60x}\dfrac{1}{20y}}=\sqrt{\dfrac{1}{12000xyz}}[/tex]
Now let
[tex]f(x,y,z)=\sqrt{\dfrac{1}{12000 xyz}}[/tex]
if we take x=y=1, we have
[tex]f(1,1,z)=\sqrt{\dfrac{1}{12000z}}[/tex]
and so f(1,1,z) tends to infinity as z goes to 0.