Respuesta :

Answer:

[tex]\beta=45\degree\:\:or\:\:\beta=135\degree[/tex]

Step-by-step explanation:

We want to solve [tex]\tan \beta \sec \beta=\sqrt{2}[/tex], where [tex]0\le \beta \le360\degree[/tex].

We rewrite in terms of sine and cosine.

[tex]\frac{\sin \beta}{\cos \beta} \cdot \frac{1}{\cos \beta} =\sqrt{2}[/tex]

[tex]\frac{\sin \beta}{\cos^2\beta}=\sqrt{2}[/tex]

Use the Pythagorean identity: [tex]\cos^2\beta=1-\sin^2\beta[/tex].

[tex]\frac{\sin \beta}{1-\sin^2\beta}=\sqrt{2}[/tex]

[tex]\implies \sin \beta=\sqrt{2}(1-\sin^2\beta)[/tex]

[tex]\implies \sin \beta=\sqrt{2}-\sqrt{2}\sin^2\beta[/tex]

[tex]\implies \sqrt{2}\sin^2\beta+\sin \beta- \sqrt{2}=0[/tex]

This is a quadratic equation in [tex]\sin \beta[/tex].

By the quadratic formula, we have:

[tex]\sin \beta=\frac{-1\pm \sqrt{1^2-4(\sqrt{2})(-\sqrt{2} ) } }{2\cdot \sqrt{2} }[/tex]

[tex]\sin \beta=\frac{-1\pm \sqrt{1^2+4(2) } }{2\cdot \sqrt{2} }[/tex]

[tex]\sin \beta=\frac{-1\pm \sqrt{9} }{2\cdot \sqrt{2} }[/tex]

[tex]\sin \beta=\frac{-1\pm3}{2\cdot \sqrt{2} }[/tex]

[tex]\sin \beta=\frac{2}{2\cdot \sqrt{2} }[/tex] or [tex]\sin \beta=\frac{-4}{2\cdot \sqrt{2} }[/tex]

[tex]\sin \beta=\frac{1}{\sqrt{2} }[/tex] or [tex]\sin \beta=-\frac{2}{\sqrt{2} }[/tex]

[tex]\sin \beta=\frac{\sqrt{2}}{2}[/tex] or [tex]\sin \beta=-\sqrt{2}[/tex]

When [tex]\sin \beta=\frac{\sqrt{2}}{2}[/tex] , [tex]\beta=\sin ^{-1}(\frac{\sqrt{2} }{2} )[/tex]

[tex]\implies \beta=45\degree\:\:or\:\:\beta=135\degree[/tex] on the interval [tex]0\le \beta \le360\degree[/tex].

When  [tex]\sin \beta=-\sqrt{2}[/tex], [tex]\beta[/tex] is not defined because [tex]-1\le \sin \beta \le1[/tex]