Answer:
b and c
Step-by-step explanation:
We are given that a population whose growth over a given time period can be described by the exponential model
[tex]\frac{dN}{dt}=r N[/tex]
Let initial population =[tex]N_0[/tex] when time t=0
[tex]\int\frac{dN}{N}=r\int_0^tdt[/tex]
After integrating
We get ln N=rt +C
Where C is integration constant
When t=0 then N=[tex]N_0[/tex]
[tex]ln N_0=C[/tex]
Substitute the value of C then we get
[tex]ln N=rt +ln N_0[/tex]
[tex]ln N-ln N_0=rt[/tex]
[tex]ln\frac{N}{N_0}=rt[/tex]
[tex]\frac{N}{N_0}=e^{rt}[/tex]
[tex]N=N_0e^{rt}[/tex]
When r=0.1 then we get
[tex]N=N_0e^{0.1t}[/tex]
Hence, the population increase not decrease.
When r= 0
Then we get
[tex]N=N_0e^{0}[/tex]
[tex]N=N_0[/tex]
Hence, the population do not increase or decrease.
So, a population with r of 0 will have no births or deaths during the time period under consideration.
If we take a positive value of r then the population will increase exponentially .
Hence, option b and c are both correct.