Respuesta :
Answer:
The box of length [tex]x=\frac{1}{6}[/tex] must be cut from each corner to maximize the volume.
Step-by-step explanation:
It is given that the side of a square card board is 1 m.
Let small squares of length x are cut from the four corners. The dimensions of the box are
Length = (1-2x) m
Width = (1-2x) m
Height = x m
The volume of a cuboid is
[tex]V=l\times b\times h[/tex]
where, l is length and b is breadth and h is height.
The volume of a rectangular box.
[tex]V=(1-2x)(1-2x)x[/tex]
[tex]V=(1-2x)(x-2x^2)[/tex]
[tex]V=x-2x^2-2x(x-2x^2)[/tex]
[tex]V=x-2x^2-2x^2+4x^3[/tex]
[tex]V=4x^3-4x^2+x[/tex]
We need to maximize the volume. Differential above equation with respect to x.
[tex]V'=12x^2-8x+1[/tex] .... (1)
Equate V'=0 to find the critical points.
[tex]12x^2-8x+1=0[/tex]
[tex]12x^2-6x-2x+1=0[/tex]
[tex]6x(2x-1)-1(2x-1)=0[/tex]
[tex](6x-1)(2x-1)=0[/tex]
[tex]x=\frac{1}{6},\frac{1}{2}[/tex]
Differential equation (1) with respect to x.
[tex]V''=24x-8[/tex]
At [tex]x=\frac{1}{6}[/tex]
[tex]V''=24(\frac{1}{6})-8=-4<0[/tex]
Volume is maximum at [tex]x=\frac{1}{6}[/tex].
At [tex]x=\frac{1}{2}[/tex]
[tex]V''=24(\frac{1}{2})-8=4>0[/tex]
Volume is minimum at [tex]x=\frac{1}{6}[/tex].
Therefore the box of length [tex]x=\frac{1}{6}[/tex] must be cut from each corner to maximize the volume.