Respuesta :
Answer:
The answer is 7
Step-by-step explanation:
We have:
if g(x)=5x-3 and h(x)= sqaure root of x.
We have to find (g o h)(4).
(g o h) = g(h(x))
Plug the value of h(x) which is √x in g(x)
g(h(x))= g(√x)
Now plug the value √x in g(x).
g(h(x))= g(√x) = 5√x-3
Now to find (g o h)(4) plug in 4 in place of x
(g o h)(x)=g(h(x))= g(√x) = 5√x-3
(g o h)(4)= g(h(4)) = g(√4) = 5√4-3
Therefore:
(g o h)(4) = 5(2)-3
(g o h)(4) = 10-3 = 7
Thus the answer is 7....
Answer: [tex](g o h)(4)=7[/tex]
Step-by-step explanation:
Given the function g(x):
[tex]g(x)=5x-3[/tex]
And the function h(x):
[tex]h(x)=\sqrt{x}[/tex]
We need to plug the function [tex]h(x)=\sqrt{x}[/tex] into the function [tex]g(x)=5x-3[/tex], in order to find [tex](g o h)(x)[/tex] . Then:
[tex](g o h)(x)=5(\sqrt{x})-3[/tex]
[tex](g o h)(x)=5\sqrt{x}-3[/tex]
Now, in order to find [tex](g o h)(4)[/tex], we need to substitute [tex]x=4[/tex] into [tex](g o h)(x)=5\sqrt{x}-3[/tex]. Then, this is:
[tex](g o h)(4)=5\sqrt{4}-3[/tex]
[tex](g o h)(4)=10-3[/tex]
[tex](g o h)(4)=7[/tex]