Respuesta :
Answer:
158.4643 kPa
Explanation:
Using Boyle's law
[tex] {P_1}\times {V_1}={P_2}\times {V_2}[/tex]
Given ,
V₁ = 5.1 m³
V₂ = 2.8 m³
P₁ = 87 kPa
P₂ = ?
Using above equation as:
[tex]{P_1}\times {V_1}={P_2}\times {V_2}[/tex]
[tex]{87}\times {5.1}={P_2}\times {2.8}[/tex]
[tex]{P_2}=\frac {{87}\times {5.1}}{2.8}\ kPa[/tex]
[tex]{P_2}=158.4643\ kPa[/tex]
The new pressure of the gas is 158.4643 kPa.
Answer: The new pressure will be 158.46 kPa
Explanation:
To calculate the new pressure, we use the equation given by Boyle's law. This law states that pressure is inversely proportional to the volume of the gas at constant temperature.
The equation given by this law is:
[tex]P_1V_1=P_2V_2[/tex]
where,
[tex]P_1\text{ and }V_1[/tex] are initial pressure and volume.
[tex]P_2\text{ and }V_2[/tex] are final pressure and volume.
We are given:
[tex]P_1=87kPa\\V_1=5.1m^3\\P_2=?kPa\\V_2=2.8m^3[/tex]
Putting values in above equation, we get:
[tex]87kPa\times 5.1m^3=P_2\times 2.8m^3\\\\P_2=158.46kPa[/tex]
Hence, the new pressure will be 158.46 kPa