Respuesta :
Answer:
158.4643 kPa
Explanation:
Using Boyle's law Â
[tex] {P_1}\times {V_1}={P_2}\times {V_2}[/tex]
Given , Â
Vâ = 5.1 mÂł
Vâ = 2.8 mÂł
Pâ = 87 kPa
Pâ = ?
Using above equation as:
[tex]{P_1}\times {V_1}={P_2}\times {V_2}[/tex]
[tex]{87}\times {5.1}={P_2}\times {2.8}[/tex]
[tex]{P_2}=\frac {{87}\times {5.1}}{2.8}\ kPa[/tex]
[tex]{P_2}=158.4643\ kPa[/tex]
The new pressure of the gas is 158.4643 kPa.
Answer: The new pressure will be 158.46 kPa
Explanation:
To calculate the new pressure, we use the equation given by Boyle's law. This law states that pressure is inversely proportional to the volume of the gas at constant temperature. Â
The equation given by this law is:
[tex]P_1V_1=P_2V_2[/tex]
where,
[tex]P_1\text{ and }V_1[/tex] are initial pressure and volume.
[tex]P_2\text{ and }V_2[/tex] are final pressure and volume.
We are given:
[tex]P_1=87kPa\\V_1=5.1m^3\\P_2=?kPa\\V_2=2.8m^3[/tex]
Putting values in above equation, we get:
[tex]87kPa\times 5.1m^3=P_2\times 2.8m^3\\\\P_2=158.46kPa[/tex]
Hence, the new pressure will be 158.46 kPa
