Respuesta :
d(x) = 2x -6
[tex]d(d^{-1}(x)) = x = 2d^{-1}(x) - 6 => d^{-1}(x) = \frac{1}{2}x + 3[/tex]
Answer: [tex]d(x)^{-1}=-\frac{x}{2}-3[/tex]
Step-by-step explanation:
Rewrite the function with [tex]d(x)=y[/tex]
[tex]y=-2x-6[/tex]
Solve for the variable "x":
[tex]y=-2x-6\\\\y+2x=-6\\\\2x=-6-y\\\\x=\frac{-6-y}{2}[/tex]
Now exchange the variables:
[tex]y=\frac{-6-x}{2}[/tex]
Simplify. Then, the inverse function of [tex]d(x)=-2x-6[/tex] is:
[tex]d(x)^{-1}=-\frac{x}{2}-3[/tex]