Answer:
h = 13cm and b= 54cm.
Step-by-step explanation:
We have that the area [tex]A=351cm^2[/tex] and the base is two centimeters longer than four times the height, that is
[tex]b = 2+4h[/tex]
where b is the base and h the height. Now, the area is
[tex]A=\frac{b*h}{2}[/tex]
[tex]351=\frac{(2+4h)h}{2}[/tex]
[tex]702=2h+4h^2[/tex]
[tex]4h^2+2h-702=0[/tex].
Now, we are going to use the general formula to solve quadratic ecuations:
[tex]h=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]
where a=4, b= 2 and c= -702.
[tex]h=\frac{-2\pm\sqrt{2^2-4(4)(-702)}}{2*4}[/tex]
[tex]h=\frac{-2\pm\sqrt{4+11232}}{8}[/tex]
[tex]h=\frac{-2\pm106}{8}[/tex]
[tex]h=\frac{-2+106}{8}[/tex] or [tex]h=\frac{-2-106}{8}[/tex]
As we are searching for the lenght, we choose the positive result:
[tex]h=\frac{-2+106}{8}=13cm[/tex]
[tex]b=2+4h = 2+52 = 54cm[/tex].