Answer:
Part i)
h = 5.44 m
Part ii)
h = 3.16 m
Explanation:
Part i)
Since the ball is rolling so its total kinetic energy in this case will convert into gravitational potential energy
So we have
[tex]\frac{1}{2}mv^2 + \frac{1}{2}I\omega^2 = mgh[/tex]
here we know that for spherical shell and pure rolling conditions
[tex]v = R \omega[/tex]
[tex]I = \frac{2}{3}mR^2[/tex]
[tex]\frac{1}{2}mv^2 + \frac{1}{2}(\frac{2}{3}mR^2)(\frac{v^2}{R^2}) = mgh[/tex]
[tex]\frac{5}{6}mv^2 = mgh[/tex]
[tex]h = \frac{5v^2}{6g}[/tex]
[tex]h = \frac{5(8^2)}{6(9.81)} = 5.44 m[/tex]
Part b)
If ball is not rolling and just sliding over the hill then in that case
[tex]\frac{1}{2}mv^2 = mgh[/tex]
[tex]h = \frac{v^2}{2g}[/tex]
[tex]h = \frac{8^2}{2(9.81)} = 3.16 m[/tex]