A ball with an initial velocity of 8.00 m/s rolls up a hill without slipping. (a) Treating the ball as a spherical shell, calculate the vertical height it reaches. (b) Repeat the calculation for the same ball if it slides up the hill without rolling.

Respuesta :

Answer:

Part i)

h = 5.44 m

Part ii)

h = 3.16 m

Explanation:

Part i)

Since the ball is rolling so its total kinetic energy in this case will convert into gravitational potential energy

So we have

[tex]\frac{1}{2}mv^2 + \frac{1}{2}I\omega^2 = mgh[/tex]

here we know that for spherical shell and pure rolling conditions

[tex]v = R \omega[/tex]

[tex]I = \frac{2}{3}mR^2[/tex]

[tex]\frac{1}{2}mv^2 + \frac{1}{2}(\frac{2}{3}mR^2)(\frac{v^2}{R^2}) = mgh[/tex]

[tex]\frac{5}{6}mv^2 = mgh[/tex]

[tex]h = \frac{5v^2}{6g}[/tex]

[tex]h = \frac{5(8^2)}{6(9.81)} = 5.44 m[/tex]

Part b)

If ball is not rolling and just sliding over the hill then in that case

[tex]\frac{1}{2}mv^2 = mgh[/tex]

[tex]h = \frac{v^2}{2g}[/tex]

[tex]h = \frac{8^2}{2(9.81)} = 3.16 m[/tex]

ACCESS MORE