Mr.rodriguez invests half money in land a tenth in stocks and a twentieth in bonds he puts the remaining 35,000 in his savings account what is the total amount of money that Mr Rodriguez saves and invests

Respuesta :

Answer:  $100,000

Step-by-step explanation:

   Land  +  Stocks  +  Bonds  +  Savings  =  100%

    [tex]\dfrac{1}{2}x[/tex]    +    0.1x     +    [tex]\dfrac{1}{20}x[/tex]       +  35,000   =  1.00x  

=  0.5x   +     0.1x   +     0.05x  +  35,000  =  1.00x

=                                    0.65x  +  35,000  =  1.00x

                                                     35,000  =  0.35x

                                                     [tex]\dfrac{35,000}{0.35}=\dfrac{0.35x}{0.35}[/tex]

                                                    100,000  =  x  

Answer:

100000

Step-by-step explanation:

Let total amount of money that Mr. Rodriguez saves and invests be x

Money invested in land = [tex]\frac{x}{2}[/tex]

Money invested in stocks = [tex]\frac{x}{10}[/tex]

Money invested in bonds = [tex]\frac{x}{20}[/tex]

Money in savings account = 35,000

According to question ,

Money invested in land + Money invested in stocks + Money invested in bonds + Money in savings account = Total amount of money that Mr. Rodriguez saves and invests

[tex]\frac{x}{2}+\frac{x}{10}+\frac{x}{20}+35000=x\\\\35000=x-\frac{x}{2}-\frac{x}{10}-\frac{x}{20}\\\\35000=\frac{20x-10x-2x-x}{20}\\35000=\frac{7x}{20}\\\\\frac{35000\times 20}{7}=x\\5000\times 20=x\\100000=x[/tex]

ACCESS MORE