(Sorry its math not geography,,,)
Savannah solve the equation 3 + 4|x/2 + 3| = 11 for one solution. Her work is shown below:

1. 4|x/2 + 3| = 8

2. |x/2 + 3| = 2

3. x/2 + 3 = 2

4. x/2 = -1

5. x = -2

What is the other solution to the given absolute value equation?​

Respuesta :

Answer:

Problem: [tex]4|\frac{x}{2}+3|=8[/tex].

Solution given: [tex]x=-2[/tex]

The other solution: [tex]x=-10[/tex]

Explanation:

[tex]|\frac{x}{2}+3|=2[/tex]

Means the value inside the absolute value has to be 2 or -2 since |2|=2 and |-2|=2.

So you already have [tex]\frac{x}{2}+3=2[/tex].

You need that [tex]\frac{x}{2}+3=-2[/tex].

Let's solve this equation:

[tex]\frac{x}{2}+3=-2[/tex]

Subtract 3 on both sides:

[tex]\frac{x}{2}=-2-3[/tex]

Simplify:

[tex]\frac{x}{2}=-5[/tex]

Multiply both sides by 2:

[tex]x=-5(2)[/tex]

Simplify:

[tex]x=-10[/tex]

So x=-2 or x=-10.

Checking!

x=-2:

[tex]4|\frac{-2}{2}+3|=8[/tex]

[tex]4|-1+3|=8[/tex]

[tex]4|2|=8[/tex]

[tex]4(2)=8[/tex]

[tex]8=8[/tex] is true so x=-2 checks out.

x=-10:

[tex]4|\frac{-10}{2}+3|=8[/tex]

[tex]4|-5+3|=8[/tex]

[tex]4|-2|=8[/tex]

[tex]4(2)=8[/tex]

[tex]8=8[/tex] is true x=-10 checks out.

It has been confirmed that -2 and -10 satisfy the equation:

[tex]4|\frac{x}{2}+3|=8[/tex].