if the length of the container is half of a foot longer than it’s width what expression represents the height of the container
![if the length of the container is half of a foot longer than its width what expression represents the height of the container class=](https://us-static.z-dn.net/files/dc8/83ec4ab5d33168c02ac1744b03b4dfbf.png)
Answer:
The height of the container is [tex]7x\ ft[/tex]
Step-by-step explanation:
Let
L ------> the length of the rectangular container
W ----> the width of the rectangular container
H ---> the height of the rectangular container
we know that
The volume of the rectangular container is
[tex]V=LWH[/tex] ------> equation A
we have
[tex]W=x\ ft[/tex]
[tex]L=(x+0.5)\ ft[/tex]
[tex]V=7x^{3}+3.5x^{2}[/tex]
substitute the values in the equation A
[tex]7x^{3}+3.5x^{2}=(x+0.5)(x)H[/tex]
Factor the term x in the left side
[tex](7x^{2}+3.5x)(x)=(x+0.5)(x)H[/tex]
Simplify
[tex](7x^{2}+3.5x)=(x+0.5)H[/tex]
Factor the term 7x in the left side
[tex](7x)(x+0.5)=(x+0.5)H[/tex]
Simplify
[tex](7x)=H[/tex]
Rewrite
[tex]H=7x\ ft[/tex]