Respuesta :
Answer:
The 2 numbers are 512.8 and 487.2.
Step-by-step explanation:
Let the numbers be x and y, then:
x + y = 1000............(1)
x^2 - y^2 = 25600
(x + y)(x - y) = 25600
1000(x - y) = 25600
x - y = 25.6............(2)
Adding (1) + (2):
2x = 1025.6
x = 512.8
so y = 1000 - 512.8
y = 487.2.
Answer:
512.8 + 487.2
Step-by-step explanation:
Let the two numbers be x and y respectively. The sum of x and y is 1000:
[tex]x+y=1000[/tex]
The difference between their squares is 25600:
[tex]x^2-y^2=25600[/tex]
We two unknowns(x and y) and two equations and therefore we can solve for x or y:
Lets:
[tex]x+y=1000[/tex]
and
[tex]x^2-y^2=25600[/tex]
We can simplify the expression as:
[tex](x+y)\cdot{(x-y)}=25600[/tex]
We can substitute x+y=1000 into this expression:
[tex]1000\cdot{(x-y)}=25600[/tex]
We can now write x in terms of y and vice verse, therefore:
[tex](x-y)=25600/1000=25.6[/tex]
[tex]x=25.6+y[/tex]
We have simple expression and can substitute it into x+y=1000
[tex]25.6+y+y=1000[/tex]
[tex]y=974.4/2=487.2[/tex]
therefore x can be solved by using the value of y and substituting it into x+y=1000:
[tex]x+487.2=1000[/tex]
[tex]x=512.8[/tex]