Respuesta :

Answer: 276 days

Explanation:

This problem can be solved using the Radioactive Half Life Formula:  

[tex]A=A_{o}.2^{\frac{-t}{h}}[/tex] (1)  

Where:  

[tex]A=\frac{1}{4}A_{o}[/tex] is the final amount of the material

[tex]A_{o}[/tex] is the initial amount of the material  

[tex]t[/tex] is the time elapsed  

[tex]h=138 days[/tex] is the half life of polonium-210

Knowing this, let's substitute the values and find [tex]t[/tex] from (1):

[tex]\frac{1}{4}A_{o}=A_{o}2^{\frac{-t}{138 days}}[/tex] (2)  

[tex]\frac{A_{o}}{4A_{o}}=2^{\frac{-t}{138 days}}[/tex] (3)  

[tex]\frac{1}{4}=2^{\frac{-t}{138 days}}[/tex] (4)  

Applying natural logarithm in both sides:

[tex]ln(\frac{1}{4})=ln(2^{\frac{-t}{138 days}})[/tex] (5)  

[tex]-1.386=-\frac{t}{138days}ln(2)[/tex] (6)  

Clearing [tex]t[/tex]:

[tex]t=276days[/tex] (7)  

ACCESS MORE