Answer: 276 days
Explanation:
This problem can be solved using the Radioactive Half Life Formula:
[tex]A=A_{o}.2^{\frac{-t}{h}}[/tex] (1)
Where:
[tex]A=\frac{1}{4}A_{o}[/tex] is the final amount of the material
[tex]A_{o}[/tex] is the initial amount of the material
[tex]t[/tex] is the time elapsed
[tex]h=138 days[/tex] is the half life of polonium-210
Knowing this, let's substitute the values and find [tex]t[/tex] from (1):
[tex]\frac{1}{4}A_{o}=A_{o}2^{\frac{-t}{138 days}}[/tex] (2)
[tex]\frac{A_{o}}{4A_{o}}=2^{\frac{-t}{138 days}}[/tex] (3)
[tex]\frac{1}{4}=2^{\frac{-t}{138 days}}[/tex] (4)
Applying natural logarithm in both sides:
[tex]ln(\frac{1}{4})=ln(2^{\frac{-t}{138 days}})[/tex] (5)
[tex]-1.386=-\frac{t}{138days}ln(2)[/tex] (6)
Clearing [tex]t[/tex]:
[tex]t=276days[/tex] (7)