Respuesta :
Answer:
[tex]1.88 m/s^2[/tex] at [tex]6.5^{\circ}[/tex]
Explanation:
We need to calculate the components of the resultant force on both the x (horizontal) and y (vertical) direction.
Components of the first force F1:
[tex]F_{1x} =(11.8) cos (53.7^{\circ})=7.0 N\\F_{1y} = (11.8) sin (53.7^{\circ})=9.5 N[/tex]
Components of the second force F2:
[tex]F_{2x} =(22.9) cos (-15.8^{\circ})=22.0 N\\F_{2y} = (22.9) sin (-15.8^{\circ})=-6.2 N[/tex]
So the components of the resultant force are
[tex]R_x = F_{1x}+F_{2x}=7.0+22.0 = 29.0 N\\R_y = F_{1y}+F_{2y} = 9.5+(-6.2)=3.3 N[/tex]
So the magnitude of the resultant force is
[tex]F=\sqrt{(29.0)^2+(3.3)^2}=29.2 N[/tex]
And the direction is
[tex]\theta = tan^{-1} (\frac{R_y}{R_x})=tan^{-1} (\frac{3.3}{29.0})=6.5^{\circ}[/tex]
The magnitude of the acceleration can be found by using Newton's second law:
[tex]a=\frac{F}{m}=\frac{29.2 N}{15.5 kg}=1.88 m/s^2[/tex]
while the direction is the same as the resultant force, [tex]6.5^{\circ}[/tex].
Answer:
magnitude: 1.88
direction: 6.5
Explanation: