Can somebody prove this mathmatical induction?
![Can somebody prove this mathmatical induction class=](https://us-static.z-dn.net/files/d32/8af30cd220d222932cb566787f6673d3.png)
Answer:
See explanation
Step-by-step explanation:
1 step:
n=1, then
[tex]\sum \limits_{j=1}^1 2^j=2^1=2\\ \\2(2^1-1)=2(2-1)=2\cdot 1=2[/tex]
So, for j=1 this statement is true
2 step:
Assume that for n=k the following statement is true
[tex]\sum \limits_{j=1}^k2^j=2(2^k-1)[/tex]
3 step:
Check for n=k+1 whether the statement
[tex]\sum \limits_{j=1}^{k+1}2^j=2(2^{k+1}-1)[/tex]
is true.
Start with the left side:
[tex]\sum \limits _{j=1}^{k+1}2^j=\sum \limits _{j=1}^k2^j+2^{k+1}\ \ (\ast)[/tex]
According to the 2nd step,
[tex]\sum \limits_{j=1}^k2^j=2(2^k-1)[/tex]
Substitute it into the [tex]\ast[/tex]
[tex]\sum \limits _{j=1}^{k+1}2^j=\sum \limits _{j=1}^k2^j+2^{k+1}=2(2^k-1)+2^{k+1}=2^{k+1}-2+2^{k+1}=2\cdot 2^{k+1}-2=2^{k+2}-2=2(2^{k+1}-1)[/tex]
So, you have proved the initial statement