Answer:
[tex]40.5\ ft^2[/tex]
Step-by-step explanation:
we know that
The area of the shaded region is equal to the area of trapezoid LWJB minus the area of triangle BSJ
step 1
Find the area of trapezoid LWJB
The area of trapezoid is equal to
[tex]A=\frac{1}{2}[JB+LW]h[/tex]
substitute the given values
[tex]A=\frac{1}{2}[18+9](9)[/tex]
[tex]A=121.5\ ft^2[/tex]
step 2
Find the area of triangle BSJ
The area of triangle is equal to
[tex]A=\frac{1}{2}[JB]h[/tex]
substitute the given values
The height of triangle is equal to the height of trapezoid
[tex]A=\frac{1}{2}[18](9)[/tex]
[tex]A=81\ ft^2[/tex]
step 3
Find the area of the shaded region
[tex]A=121.5-81=40.5\ ft^2[/tex]