Respuesta :

Answer:

8b) 2x+[tex]\sqrt{3}[/tex]x

8c) [tex]\frac{x-3\sqrt{x} +2 }{x-4}[/tex]

Step-by-step explanation:

8b)

Multiply the top and bottom by 2+[tex]\sqrt{3}[/tex] to rationalize this fraction

[tex]\frac{x}{2-\sqrt{3} } * \frac{2+\sqrt{3} }{2+\sqrt{3} }[/tex]

Simplify the product

[tex]\frac{x(2+\sqrt{3}) }{1}[/tex]

Distribute x through the parenthesis

2x+[tex]\sqrt{3}[/tex]x

8c)

Multiply the top and bottom by [tex]\sqrt{x}-2[/tex] to rationalize this fraction

[tex]\frac{(\sqrt{x}-1)*(\sqrt{x}-2) }{(\sqrt{x}+2)*(\sqrt{x}-2) }[/tex]

Simplify the product

[tex]\frac{x-2\sqrt{x}-\sqrt{x}+2  }{x-4}[/tex]

Collect like terms

[tex]\frac{x-3\sqrt{x} +2 }{x-4}[/tex]

ACCESS MORE