Respuesta :

Answer:

3x - y + [tex]\frac{- 5x^2y}{3x^3 + 2x^2y - xy^2}[/tex]

Step-by-step explanation:

Hooboy okay here we go.

1.) Rewrite the equation in the classic division method

3x³ + 2x²y - xy² [tex]\sqrt{9x^4 + 3x^3y - 5x^2y^2 + xy^3}[/tex]

2.) Divide using normal division rules, but it's super hard now 'cause there are letters involved. Basically, what can you multiply 3x³ by to get 9x⁴? 3x. So 3x is your first number. Then multiply everything else by 3x, and subtract

                                          3x

3x³ + 2x²y - xy² [tex]\sqrt{9x^4 + 3x^3y - 5x^2y^2 + xy^3}[/tex]

                                       -(9x⁴ + 6x³y - 3x²y²)

                                      = 0     - 3x³y - 2x²y² - 5x²y + xy³

Now lets do that again, see what happens. 3x³ times -y should get -3x³y

                                          3x - y

3x³ + 2x²y - xy² [tex]\sqrt{9x^4 + 3x^3y - 5x^2y^2 + xy^3}[/tex]

                                      - (9x⁴ + 6x³y - 3x²y²)

                                      = 0     - 3x³y - 2x²y² - 5x²y + xy³

                                            - ( - 3x³y - 2x²y²            + xy³)

                                               =   0    + 0       - 5x²y  + 0

So! From this information, we can know that the answer is 3x-y with a remainder of - 5x²y. How it's written is shown above, in "Answer"