Answer:
649.8420 nm
Explanation:
We have given [tex]\Theta _1=24^{\circ} \ and\ \Theta _2=39^{\circ}[/tex]
[tex]\lambda _1=420\ nm[/tex] we have to find unknown wavelength that is [tex]\lambda _2[/tex]
The condition for constructive interference is [tex]dsin\Theta =n\lambda[/tex]
Where d is distance between slits [tex]\Theta[/tex] is angle of emergence and n is order of maxima
Using constructive interference equation
[tex]dsin\Theta _1=n\lambda _1[/tex] ---------eqn 1
[tex]dsin\Theta _2=n\lambda _2[/tex]---------eqn 2
On dividing eqn 1 by eqn 2
[tex]\frac{\lambda _1}{\lambda _2}=\frac{sin\Theta _1}{sin\Theta _2}[/tex]
[tex]\frac{420}{\lambda _2}=\frac{sin24^{\circ}}{sin39^{\circ}}[/tex]
[tex]\lambda _2=649.8420\ nm[/tex]