The cell potential of the following electrochemical cell depends on the gold concentration in the cathode half-cell: Pt(s)|H2(g,1atm)|H+(aq,1.0M)|Au3+(aq,?M)|Au(s). What is the concentration of Au3+ in the solution if Ecell is 1.27 V ? Express your answer using two significant figures.

Respuesta :

Explanation:

The standard reduction potential [tex](E_{cell})[/tex] is given as 1.27 V.

Concentration of [tex]H^{+}[/tex] = 1.0 M

Hence, reduction reaction is as follows.

       [tex]Au^{3+}(aq) + 3e^{-} \rightarrow 2Au(s)[/tex]

Oxidation reaction is as follows.

       [tex]H_{2}(g) \rightarrow H^{+}(aq) + e^{-}[/tex]

Therefore, overall net chemical equation will be as follows.

       [tex]2Au^{3+}(aq) + 3H_{2}(g) \rightarrow 2Au(s) + 6H^{+}(aq)[/tex]

As, its is known that standard electrode potential ([tex]E^{o}_{cell}[/tex]) for hydrogen is equal to zero.

And, standard electrode potential for [tex]Au^{3+}[/tex] is [tex]E_{o}[/tex] equal 1.50 V.

Hence, formula to calculate standard cell potential is as follows.

           [tex]E^{o}_{cell}[/tex] = [tex](E_{o})_{reduction}[/tex] - [tex](E_{o})_{oxidation}[/tex]

                               = 1.50 V - 0 V

                                = 1.50 V

Therefore, concentration of [tex]Au^{3+}[/tex] is calculated as follows.

            [tex]E_{cell} = E^{o}_{cell} - \frac{0.059}{2}log \frac{[H^{+}]^{6}}{[Au^{3+}]^{2}}[/tex]

Hence, substitute the given values as follows.

             [tex]E_{cell} = E^{o}_{cell} - \frac{0.059}{2}log \frac{[H^{+}]^{6}}{[Au^{3+}]^{2}}[/tex]

                     1.27 = 1.50 - \frac{0.059}{6}log \frac{(1)^{6}}{[Au^{3+}]^{2}}[/tex]

                   [tex]log\frac{1}{[Au^{3+}]^{2}}[/tex] = 23

Taking antilog on both the sides, the above equation will be as follows.

               [tex]\frac{1}{[Au^{3+}]^{2}}[/tex] = [tex]10^{23}[/tex]

                                  = [tex]1 \times 10^{23}[/tex]

                 [tex]\frac{1}{[Au^{3+}]^{2}}[/tex] = [tex]3.16 \times 10^{11}[/tex]

                          [tex][Au^{3+}][/tex] = [tex]3.16 \times 10^{-12}[/tex] M

Hence, we can conclude that the concentration for [tex][Au^{3+}][/tex] is [tex]3.16 \times 10^{-12}[/tex] M.