Respuesta :
Answer:
[tex]\boxed{\dfrac{1}{16}}[/tex]
Explanation:
[tex]C = C_{0}(x)^{\frac{t}{10}}[/tex]
Data:
t = 5 yr
C = ¼C₀
Calculation:
[tex]\begin{array}{rcl}\frac{1}{4}C_{0} & = & C_{0}(x)^{\frac{5}{10}}\\\frac{1}{4} & = & x^{\frac{1}{2}}\\x & = & \mathbf{\frac{1}{16}}\\\end{array}[/tex]
[tex]\text{The value of $x$ is $\boxed{\mathbf{\dfrac{1}{16}}}$}[/tex]
Answer:
x=0.25
Explanation:
The equation is
[tex]C = Co*x^{\frac{t}{10} }[/tex]
For this problem, C would be equal to 0.25 * Co when t is equal to 10 years. If we put this information in the equation we're left with:
[tex]0.25*Co=Co*x^{\frac{10}{10} }[/tex]
Now we solve for x:
[tex]0.25*Co=Co*x^{\frac{10}{10} }\\0.25=x^{1 }\\0.25=x[/tex]
So the value of x is 0.25