Respuesta :
The amount of salt in the tank at time [tex]t[/tex], denoted by [tex]A(t)[/tex], changes over time according to the differential equation,
[tex]\dfrac{\mathrm dA}{\mathrm dt}=-\left(\dfrac A{100}\dfrac{\rm lb}{\rm gal}\right)\left(5\dfrac{\rm gal}{\rm min}\right)[/tex]
[tex]\implies\dfrac{\mathrm dA}{\mathrm dt}+\dfrac A{20}=0[/tex]
Multiply both sides by [tex]e^{t/20}[/tex]:
[tex]e^{t/20}\dfrac{\mathrm dA}{\mathrm dt}+\dfrac{e^{t/20}}{20}A=0[/tex]
Now the left side can be condensed to the derivative of a product:
[tex]\dfrac{\mathrm d}{\mathrm dt}[e^{t/20}A]=0[/tex]
Integrate both sides to get
[tex]e^{t/20}A=C[/tex]
and solving for [tex]A(t)[/tex] gives
[tex]A(t)=Ce^{-t/20}[/tex]
Given that there are 40 pounds of salt at the start, or [tex]A(0)=40[/tex], we know [tex]C=40[/tex], so that
[tex]A(t)=40e^{-t/20}[/tex]
We want the concentration to fall to 0.1 lb/gal, which means
[tex]\dfrac{40e^{-t/20}}{100}\dfrac{\rm lb}{\rm gal}=0.1\dfrac{\rm lb}{\rm gal}[/tex]
[tex]\implies e^{-t/20}=\dfrac1{40}[/tex]
[tex]\implies-\dfrac t{20}=-\ln40[/tex]
[tex]\implies\boxed{t=20\ln40\approx73.78}[/tex]
so it would take about 73.78 minutes, or about 1.23 hours, for the concentration to fall to 0.1 lb/gal.