Answer:
[tex]\theta_1=0\\ \\\theta_2=\pi\\ \\\theta_3=\dfrac{7\pi}{6}\\ \\\theta_4=\dfrac{11\pi}{6}[/tex]
Step-by-step explanation:
Solve the equation
[tex]\sin \theta +1=\cos 2\theta[/tex]
First, use formula
[tex]\cos 2\theta =1-2\sin^2\theta[/tex]
Then the equation is
[tex]\sin\theta+1=1-2\sin^2\theta\\ \\\sin\theta=-2\sin^2\theta\\ \\\sin\theta+2\sin^2\theta=0\\ \\\sin\theta(1+2\sin\theta)=0[/tex]
The produat is equal to 0 when one of its factors is 0:
[tex]\sin\theta=0\text{ or }1+2\sin\theta=0[/tex]
Solve each of these equations:
[tex]\sin\theta=0\\ \\\theta=\pi k,\ k\in Z[/tex]
[tex]1+2\sin\theta=0\\ \\\sin\theta=-\dfrac{1}{2}\\ \\\theta=(-1)^k\arcsin\left(-\dfrac{1}{2}\right)+\pi k,\ kin Z\\ \\\theta=(-1)^k\cdot\left(-\dfrac{\pi}{6}\right)+\pi k,\ k\in Z[/tex]
The solutions, which are in interval[tex]0\le \rheta<2\pi[/tex] are
[tex]\theta_1=0\\ \\\theta_2=\pi\\ \\\theta_3=(-1)\cdot \left(-\dfrac{\pi}{6}\right)+\pi=\dfrac{7\pi}{6}\\ \\\theta_4=(-1)^2\cdot \left(-\dfrac{\pi}{6}\right)+2\pi=\dfrac{11\pi}{6}[/tex]