Respuesta :
Answer:
[tex]\large\boxed{QS=22\dfrac{2}{3}}[/tex]
Step-by-step explanation:
Look at the picture.
We must start from domain:
[tex]1)\\2x-4>0[/tex] add 4 to both sides
[tex]2x>4[/tex] divide both sides by 2
[tex]x>2[/tex]
and
[tex]2)\\4x-1>0[/tex] add 1 to both sides
[tex]4x>1[/tex] divide both sides by 4
[tex]x>\dfrac{1}{4}[/tex]
and
[tex]3)\\8x-43>0[/tex] add 43 to both sides
[tex]8x>43[/tex] divide both sides by 8
[tex]x>\dfrac{43}{8}\\\\x>5\dfrac{3}{8}[/tex]
From 1, 2 and 3 we have:
[tex]D:x>5\dfrac{3}{8}[/tex]
[tex]\bold{(1)}\\\\(8x-43)+(4x-1)=2x-4\\8x-43+4x-1=2x-4\qquad\text{combine like terms}\\(8x+4x)+(-43-1)=2x-4\\12x-44=2x-4\qquad\text{add 44 to both sides}\\12x=2x+40\qquad\text{subtract}\ 2x\ \text{from both sides}\\10x=40\qquad\text{divide both sides by 10}\\x=4\notin D[/tex]
[tex]\bold{(2)}\\\\2x-4=(4x-1)-(8x-43)\\2x-4=4x-1-8x-(-43)\\2x-4=(4x-8x)+(-1+43)\qquad\text{combine like terms}\\2x-4=-4x+42\qquad\text{add 4 to both sides}\\2x=-4x+46\qquad\text{add}\ 4x\ \text{to both sides}\\6x=46\qquad\text{divide both sides by 6}\\x=\dfrac{46}{6}\\\\x=\dfrac{23}{3}\\\\x=7\dfrac{2}{3}\in D[/tex]
R is midpoint of QS. Therefore QR = RS ⇒ QS = 2(RS).
RS = 2x - 4
Put the value of x and calculate the length of RS:
[tex]RS=2\left(\dfrac{23}{3}\right)-4=\dfrac{46}{3}-\dfrac{12}{3}=\dfrac{34}{3}[/tex]
Therefore
[tex]QS=2\left(\dfrac{34}{3}\right)=\dfrac{68}{3}=22\dfrac{2}{3}[/tex]
![Ver imagen gmany](https://us-static.z-dn.net/files/d6c/b466bd0de8f42c8b7fc546d4b78e9a86.png)