Answer: 281 hours
Explanation:-
1 electron carry charge=[tex]1.6\times 10^{-19}C[/tex]
1 mole of electrons contain=[tex]6.023\times 10^{23}[/tex] electrons
Thus 1 mole of electrons carry charge=[tex]\frac{1.6\times 10^{-19}}{1}\times 6.023\times 10^{23}=96500C[/tex]
[tex]Cu^{2+}+2e^-\rightarrow Cu[/tex]
[tex]96500\times 2=193000Coloumb[/tex] of electricity deposits 1 mole or 63.5 g of copper
0.0635 kg of copper is deposited by 193000 Coloumb
11.5 kg of copper is deposited by=[tex]\frac{193000}{0.0635}\times 11.5=34952756[/tex] Coloumb
[tex]Q=I\times t[/tex]
where Q= quantity of electricity in coloumbs = 34952756 C
I = current in amperes = 34.5 A
t= time in seconds = ?
[tex]34952756 C=34.5A\times t[/tex]
[tex]t=1013123sec=281hours[/tex]
Thus it will take 281 hours to plate 11.5 kg of copper onto the cathode if the current passed through the cell is held constant at 34.5 A.