Respuesta :

gmany

Answer:

3

Step-by-step explanation:

We know:

[tex]f\bigg(f^{-1}(x)\bigg)=x[/tex]

Therefore

[tex]f\bigg(f^{-1}(3)\bigg)=3[/tex]

Other method.

Find [tex]f^{-1}(x)[/tex]

[tex]f(x)=3x+12\to y=3x+12[/tex]

exchange x to y and vice versa:

[tex]x=3y+12[/tex]

solve for y:

[tex]3y+12=x[/tex]            subtract 12 from both sides

[tex]3y=x-12[/tex]        divide both sides by 3

[tex]y=\dfrac{x-12}{3}\to f^{-1}(x)=\dfrac{x-12}{3}[/tex]

[tex]f\bigg(f^{-1}(x)\bigg)[/tex] replace x in f(x) with the expression [tex]\dfrac{x-12}{3}[/tex]

[tex]f\bigg(f^{-1}(x)\bigg)=3\cdot\dfrac{x-12}{3}+12=x-12+12=x[/tex]

[tex]f\bigg(f^{-1}(3)\bigg)[/tex] - put x = 3 to [tex]f\bigg(f^{-1}(x)\bigg)[/tex]

[tex]f\bigg(f^{-1}(3)\bigg)=3[/tex]