Answer:
The string's mass and the maximum transverse acceleration are 2.2 g and 22400.51 m/s².
Explanation:
Given that,
Length of string = 2.50 m
Tension = 90.0 N
Amplitude = 3.50 cm
Speed = 28.0
First overtone ,
[tex]\lambda =l[/tex]
(a). We need to calculate the mass of string
Using maximum transverse speed at antinodes
[tex]v_{max}=A\omega[/tex]
[tex]A\omega=28[/tex]
[tex]A\times2\pi f=28[/tex]
Put the value into the formula
[tex]f=\dfrac{28}{2\times3.14\times3.50\times10^{-2}}[/tex]
[tex]f=127.39\ Hz[/tex]
Using formula of wavelength
[tex]v = f\lambda[/tex]
[tex]\sqrt{\dfrac{T}{\mu}}=f\lambda[/tex]
[tex]\mu=\dfrac{90}{(127.39\times2.50)^2}[/tex]
[tex]\mu=8.8734\times10^{-4}[/tex]
Mass of string = [tex]\mu\times l[/tex]
Mass of string = [tex]8.8\times10^{-4}\times2.50[/tex]
Mass of string =2.2 g
(b). We need to calculate the maximum transverse acceleration of this point on the string
Using formula of the maximum transverse acceleration
[tex]a=A\omega^2[/tex]
[tex]a=A\times(2\pif)^2[/tex]
Put the value into the formula
[tex]a=3.50\times10^{-2}(\times2\times3.14\times127.39)^2[/tex]
[tex]a=22400.51\ m/s^2[/tex]
Hence, The string's mass and the maximum transverse acceleration are 2.2 g and 22400.51 m/s².