A thin string 2.50 m in length is stretched with a tension of 90.0 N between two supports. When the string vibrates in its first overtone, a point at an antinode of the standing wave on the string has an amplitude of 3.50 cm and a maximum transverse speed of 28.0 m/s. (a) What is the string’s mass? (b) What is the magnitude of the maximum transverse acceleration of this point on the string?

Respuesta :

Answer:

The string's mass and the maximum transverse acceleration are 2.2 g and 22400.51 m/s².

Explanation:

Given that,

Length of string = 2.50 m

Tension = 90.0 N

Amplitude = 3.50 cm

Speed = 28.0

First overtone ,

[tex]\lambda =l[/tex]

(a). We need to calculate the mass of string

Using maximum transverse speed at antinodes

[tex]v_{max}=A\omega[/tex]

[tex]A\omega=28[/tex]

[tex]A\times2\pi f=28[/tex]

Put the value into the formula

[tex]f=\dfrac{28}{2\times3.14\times3.50\times10^{-2}}[/tex]

[tex]f=127.39\ Hz[/tex]

Using formula of wavelength

[tex]v = f\lambda[/tex]

[tex]\sqrt{\dfrac{T}{\mu}}=f\lambda[/tex]

[tex]\mu=\dfrac{90}{(127.39\times2.50)^2}[/tex]

[tex]\mu=8.8734\times10^{-4}[/tex]

Mass of string = [tex]\mu\times l[/tex]

Mass of string = [tex]8.8\times10^{-4}\times2.50[/tex]

Mass of string =2.2 g

(b). We need to calculate the maximum transverse acceleration of this point on the string

Using formula of the maximum transverse acceleration

[tex]a=A\omega^2[/tex]

[tex]a=A\times(2\pif)^2[/tex]

Put the value into the formula

[tex]a=3.50\times10^{-2}(\times2\times3.14\times127.39)^2[/tex]

[tex]a=22400.51\ m/s^2[/tex]

Hence, The string's mass and the maximum transverse acceleration are 2.2 g and 22400.51 m/s².