Answer with explanation:
Part a)
[tex]v_{radial}=\frac{dr}{dt}=\frac{d(2+0.7t^{2})}{dt}\\\\v_{radial}=1.4t\\\\\therefore v_{radial}|_{t=4}=1.4\times 4=5.6ft/s\\\\v_{angular}=r|_{t=4}\times \frac{d\theta }{dt}=13.2\frac{3.5t}{dt}=46.2fts^{-1}\\\\\therefore v=\sqrt{v_{radial}^{2}+v_{angular}^{2}}\\\\v=46.53ft/s[/tex]
Part b)
[tex]a_{radial}=\frac{d^{2}r}{dt^{2}}=\frac{d^{2}(2+0.7t^{2})}{dt^{2}}\\\\a_{radial}=1.4ft/s^{2}\\\\a_{angular}=r\times \frac{d^{2}\theta }{dt^{2}}\\\\a_{angular}=r\times \frac{d^{2}(3.5t) }{dt^{2}}\\\\\therefore a_{angular}=0\\\\\therefore Accleration=1.4ft/s^{2}[/tex]