Parameterize the first line segment by
[tex]\vec r(t)=(1-t)(2,0,1)+t(3,2,1)=(2+t,2t,1)[/tex]
and the second by
[tex]\vec s(t)=(1-t)(3,2,1)+t(3,4,4)=(3,2+2t,1+3t)[/tex]
both with [tex]0\le t\le1[/tex]. Then
[tex]\displaystyle\int_C(x+yz)\,\mathrm dx+2x\,\mathrm dy+xyz\,\mathrm dz[/tex]
[tex]=\displaystyle\int_0^1\bigg(((2+t)+2t)(1)+2(2+t)(2)+(2+t)(2t)(1)(0)\bigg)\,\mathrm dt[/tex]
[tex]\displaystyle\quad+\int_0^1\bigg((3+(2+2t)(1+3t))(0)+2(3)(2)+3(2+2t)(1+3t)(3)\bigg)\,\mathrm dt[/tex]
[tex]=\displaystyle\int_0^1(54t^2+79t+40)\,\mathrm dt=\boxed{\frac{195}2}[/tex]