Answer:
Step-by-step explanation:
Given that the average annual income of 100 randomly chosen residents of Santa Cruz is $45,221 with a standard deviation of $30,450.
a) Std deviation of mean = [tex]\frac{\sigma}{\sqrt{n} } \\=3045[/tex]
b) [tex]H_0: x bar =40000\\H_a: x bar <40000\\\alpha = 10%[/tex]
Test statistic = Mean diff/std dev of mean = [tex]\frac{-5221}{3045} \\=-1.715[/tex]
p value = 0.043
Since p >0.01 we accept null hypothesis.
c) For two sided p value = 0.086
Here we have
[tex]H_0: x bar =42000\\H_a: x bar \neq 42000\\\alpha = 0.05[/tex]
Test statistic = [tex]\frac{-3000}{3045} \\\\=-0.99[/tex]
p value = 0.3221
Since p >alpha, we accept null hypothesis.