Lasers can be constructed that produce an extremely high intensity electromagnetic wave for a brief time—called pulsed lasers. They are used to ignite nuclear fusion, for example. Such a laser may produce an electromagnetic wave with a maximum electric field strength of 1.00×1011V/m for a time of 1.00 ns. (a) What is the maximum magnetic field strength in the wave? (b) What is the intensity of the beam? (c) What energy does it deliver on a 1.00-mm2 area?

Respuesta :

Explanation:

It is given that,

Maximum electric field, [tex]E=10^{11}\ V/m[/tex]

Time taken, [tex]t=1\ ns=10^{-9}\ s[/tex]

(a) Maximum magnetic field, [tex]B=\dfrac{E}{c}[/tex]

[tex]B=\dfrac{10^{11}\ V/m}{3\times 10^8\ m/s}[/tex]

B = 333.33 T

(b) Intensity of beam, [tex]I=\dfrac{E^2}{2\mu_o c}[/tex]

[tex]I=\dfrac{(10^{11})^2}{2\times 4\pi \times 10^{-7}\times 3\times 10^8}[/tex]

[tex]I=1.32\times 10^{19}\ W/m^2[/tex]

(c) Energy delivered by the pulse, [tex]E=I\times A\times t[/tex]

[tex]E=1.32\times 10^{19}\times 10^{-6}\times 10^{-9}[/tex]

E = 13200 J

Hence, this is the required solution.