Explanation:
It is given that,
Maximum electric field, [tex]E=10^{11}\ V/m[/tex]
Time taken, [tex]t=1\ ns=10^{-9}\ s[/tex]
(a) Maximum magnetic field, [tex]B=\dfrac{E}{c}[/tex]
[tex]B=\dfrac{10^{11}\ V/m}{3\times 10^8\ m/s}[/tex]
B = 333.33 T
(b) Intensity of beam, [tex]I=\dfrac{E^2}{2\mu_o c}[/tex]
[tex]I=\dfrac{(10^{11})^2}{2\times 4\pi \times 10^{-7}\times 3\times 10^8}[/tex]
[tex]I=1.32\times 10^{19}\ W/m^2[/tex]
(c) Energy delivered by the pulse, [tex]E=I\times A\times t[/tex]
[tex]E=1.32\times 10^{19}\times 10^{-6}\times 10^{-9}[/tex]
E = 13200 J
Hence, this is the required solution.