Answer:
[tex]x=\frac{\pi}{3}[/tex]
Step-by-step explanation:
The given logarithmic equation is [tex]\log_2\cot x-2\log_4\csc 2x=\log_2\cos x[/tex].
We regroup to get:
[tex]\log_2\cot x-\log_2\cos x=2\log_4\csc 2x[/tex].
Apply the quotient property of logarithms on the LHS.
[tex]\log_2{\frac{\cot x}{\cos x}=2\log_4\csc 2x[/tex].
Apply the power rule and change of base on the RHS
[tex]\log_2{\frac{1}{\sin x}=\frac{\log_2\csc^2 2x}{\log_24}[/tex].
[tex]\log_2 \csc x=\frac{\log_2\csc^2 2x}{2}[/tex].
[tex]\log_2 \csc x=\frac{\log_2\csc^2 2x}{2}[/tex].
[tex]\log_2 \csc x=\log_2\csc 2x[/tex].
We equate the arguments to get:
[tex]\csc 2x=\csc x[/tex]
[tex]\csc 2x-\csc x=0[/tex]
Or
[tex]\frac{1}{\sin 2x}-\frac{1}{\sin x}=0[/tex]
[tex]\implies \frac{1}{2\sin x\cos x}-\frac{1}{\sin x}=0[/tex]
[tex]\frac{1-2\cos x}{2\sin x \cos x}=0[/tex]
[tex]\implies 1-2\cos x=0[/tex]
[tex]\implies \cos x=0.5[/tex]
[tex]\implies x=\frac{\pi}{3},\frac{5\pi}{3}[/tex]
But [tex]x=\frac{5\pi}{3}[/tex] is an extraneous solution.
Therefore [tex]x=\frac{\pi}{3}[/tex] is the only solution in the interval [0,2π]