Respuesta :

Answer: First Option

[tex]sin(X)=\frac{\sqrt{119}}{12}[/tex],  [tex]cos(X)=\frac{5}{12}[/tex]

Step-by-step explanation:

We know that the sine function is defined as:

[tex]sin(x)=\frac{Opposite}{Hypotenuse}[/tex]

In the same way the cosine function is defined as:

[tex]cos(x)=\frac{adjacent}{Hypotenuse}[/tex]

Therefore it is fulfilled that:

Opposite: is the length of the side opposite angle

Adjacent: It is the length of the side that contains the angle of 90 ° and angle  

Hypotenuse: It is the length of the side opposite the angle of 90 °

So for angle X:

[tex]Opposite=\sqrt{119}[/tex]

[tex]Adjacent=5[/tex]

[tex]Hypotenuse=12[/tex]

Finally:

[tex]sin(X)=\frac{\sqrt{119}}{12}[/tex]

[tex]cos(X)=\frac{5}{12}[/tex]