Respuesta :
Answer:
1. [tex]y-4=4(x-1)[/tex]
2. [tex]y-1=1(x+5)[/tex]
3. [tex]y-1=\frac{1}{2}(x+4)[/tex]
4. [tex]y+5=-\frac{4}{5}(x-5)[/tex]
5. [tex]y-0=-\frac{1}{3}(x+1)[/tex]
Step-by-step explanation:
∵ The equation of a line passes through [tex](x_1, y_1)[/tex] and [tex](x_2, y_2)[/tex] is,
[tex]y-y_1=\frac{y_2-y_1}{x_2-x_1}(x-x_1)[/tex]
We know that,
The slope of the line is,
[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]
[tex]\implies y-y_1=m(x-x_1)[/tex]
Which is the point slope form of a line,
1. Thus, the equation of line passes through (1, 4) with slope 4 is,
[tex]y-4=4(x-1)[/tex]
2. The equation of line passes through (-5, 1) and (-4, 2),
[tex]y-1=\frac{2-1}{-4+5}(x+5)[/tex]
[tex]y-1=1(x+5)[/tex]
3. The equation of line passes through (-4, 1) and (0, 2),
[tex]y-1=\frac{2-1}{0+4}(x+4)[/tex]
[tex]y-1=\frac{1}{2}(x+4)[/tex]
4. Now, two parallel lines having the same slope.
Thus, the slope of line parallel to y = -4/5x - 4 is, -4/5,
So, the equation of line passes through (5, -5) with slope -4/5 is,
[tex]y+5=-\frac{4}{5}(x-5)[/tex]
5. If a line has slope m then the slope of perpendicular line is [tex]-\frac{1}{m}[/tex]
Slope of line y = x + 3,
Slope of perpendicular line of y = x + 3 = -[tex]\frac{1}{3}[/tex],
So, the equation of line passes through (-1, 0) with slope [tex]-\frac{1}{3}[/tex],
[tex]y-0=-\frac{1}{3}(x+1)[/tex]