[tex]\begin{cases}t_1=44\\t_{n+1}=t_n+16&\text{for }n>1\end{cases}[/tex]
According to this rule, we get
[tex]t_2=t_1+16[/tex]
[tex]t_3=t_2+16=t_1+2\cdot16[/tex]
[tex]t_4=t_3+16=t_1+3\cdot16[/tex]
and so on, up to
[tex]t_n=t_{n-1}+16=t_{n-2}+2\cdot16=\cdots[/tex]
[tex]\implies t_n=t_1+(n-1)\cdot16[/tex]
Then
[tex]t_n=44+16(n-1)=16n+28[/tex]
which matches answer A.