An arithmetic sequence is defined by the recursive formula t1 = 44, tn + 1 = tn + 16, where n ∈N and n ≥ 1. Which is the general term of the sequence? A) tn = 44 + (n - 1)16, where n ∈N and n ≥ 1 B) tn = 44 + (n + 1)16, where n ∈N and n ≥ 1 C) tn = 44 + (n - 2)16, where n ∈N and n ≥ 1 D) tn + 1 = 44 + (n - 1)16, where n ∈N and n ≥ 0

Respuesta :

[tex]\begin{cases}t_1=44\\t_{n+1}=t_n+16&\text{for }n>1\end{cases}[/tex]

According to this rule, we get

[tex]t_2=t_1+16[/tex]

[tex]t_3=t_2+16=t_1+2\cdot16[/tex]

[tex]t_4=t_3+16=t_1+3\cdot16[/tex]

and so on, up to

[tex]t_n=t_{n-1}+16=t_{n-2}+2\cdot16=\cdots[/tex]

[tex]\implies t_n=t_1+(n-1)\cdot16[/tex]

Then

[tex]t_n=44+16(n-1)=16n+28[/tex]

which matches answer A.

ACCESS MORE