Respuesta :

Recall the Pythagorean identity,

[tex]1+\tan^2x=\sec^2x[/tex]

Then

[tex]\sec^2x-2\tan^2x=\sec^2x-2(\sec^2x-1)=2-\sec^2x[/tex]

Recall the double angle identity for cosine:

[tex]\cos(2x)=2\cos^2x-1[/tex]

from which we get

[tex]2=\dfrac{\cos(2x)+1}{\cos^2x}=(\cos(2x)+1)\sec^2x[/tex]

Substituting this above gives

[tex]\sec^2x-2\tan^2x=(\cos(2x)+1)\sec^2x-\sec^2x=\sec^2x(\cos(2x)+1-1)[/tex]

[tex]\implies\sec^2x-2\tan^2x=\sec^2x\cos(2x)[/tex]

as required.