Match each quadratic function given in factored form
with its equivalent standard form listed on the left.
f(x) = (x + 2)(x – 6)
f(x) = (x – 4)(x+3)
f(x) = (x – 12)(x+1)
f(x) = (x – 3)(x +4)

Respuesta :

Answer:

(x+2)(x-6)=x^2 - 4x -12

(x-4)(x+3)=x^2 - x - 12

(x-12)(x+1)=x^2 - 11x - 12

(x-3)(x+4)=x^2 + x - 12

Step-by-step explanation:

You do the calculations:

(x + a) (x + b) = x^2 +ax + bx + ab = x^2 + (a+b) + ab, where a and b are real numbers. (At least in this case)

The factored form of the expression as shown are [tex]x^2 - x - 12, \ x^2 - 11x - 12, \ x^2 - 11x - 12 \ and \ x^2 + x - 12[/tex]

Expanding factored form of quadratic equation

Given the following functions;

[tex]f(x) = (x + 2)(x -6) = x^2 - 6x + 2x - 12\\f(x)= x^2 - 4x - 12[/tex]

For the function'

[tex]f(x) = (x - 4)(x+3) = x^2 + 3x - 4x - 12\\f(x) = x^2 - x - 12[/tex]

For the function f(x) = (x – 12)(x+1)

[tex]f(x) = x^2 + x - 12x - 12\\f(x) = x^2 - 11x - 12[/tex]

For the function f(x) = (x – 3)(x +4)

[tex]f(x) = (x -3)(x +4) =x^2 + 4x - 3x - 12\\f(x) = x^2 + x - 12[/tex]

Learn more on factoring here; https://brainly.com/question/25829061

#SPJ2